
NASA Technical Memorandum 4489

Open Environments To Support

Systems Engineering Tool

Integration: A Study Using

the Portable Common Tool

Environment (PCTE)

Dave E. Eckhardt, Jr.

Langley Research Center

Hampton, Virginia

Michael J. Jipping

Hope College

Holland, Michigan

Chris J. Wild and Steven J. Zeil

Old Dominion University

Norfolk, Virginia

Cathy C. Roberts

Institute for Computer Applications

in Science and Engineering

Langley Research Center

Hampton, Virginia

National Aeronautics and

Space Administration

Office of Management

Scientific and Technical

Information Program

1993

co

_n m o

I o

z _ 0

0

Z Z
_ww
Z¢
Z_Z

_wZ _

Z_Z

Z

w O0

w_
Z

I_

I__

,,0

2:

The use of trademarks or names of manufacturers in this

report is for accurate reporting and does not constitute an

official endorsement, either expressed or implied, of such

products or manufacturers by the National Aeronautics and

Space Administration.

Acknowledgments

We appreciate tile help of David Green from I,ockheed En-

gineering and Sciences Corporation, who installed and main-

tained tile PCTE software, and Kathryn Smith, Denise Jones,

Carrie Walker, and Steve Young from Langley, who provided in-

house expertise with the three tools used in this study. We also

want to thank John Turkovieh of the Charles Stark Draper Lab-

oratory, Inc., who provided an ASCII representation of the data

flow diagrams produced by CSDL CASE.

Abstract

A study of computer engineering tool integration using the Portable

Common Tool Environment (PCTE) Public Interface Standard is pre-

sented. Over a lO-week time frame, three existing software products

were encapsulated to work in the Emeraude environment, an imple-
mentation of the PCTE version 1.5 standard. The software products

used were a computer-aided software engineering (CASE) design tool,

a software reuse tool, and a computer architecture design and analysis

tool. The tool set was then demonstrated to work in a coordinated design

process in the Emeraude environment. This paper describes the project
and the features of PCTE used, summarizes experience with the use

of Emeraude environment over the project time frame, and addresses
several related areas for future research.

Introduction

Background

With the rapid development of digital process-
ing technology, NASA programs have become in-

creasingly dependent on the capabilities of complex

computer systems. Current flight control research,

which advocates active controls (ref. 1) and fully in-

tegrated guidance and control systems (rcf. 2), re-

lies heavily on digital processing technology. These
advanced guidance and control systems, designed

to optimize aircraft performance, will demand high-

throughput, fault-tolerant computing systems. Addi-

tionally, safety concerns will dictate that future gen-
erations of commercial aircraft have hardware and

software systems with extremely low failure rates

such that catastrophic failures are extremely improb-
able, that is, such failures are "not expected to occur

within the total life span of the whole fleet of the

model (ref. 3)." The functional performance, relia-

bility, and safety of these systems are of great impor-
tance to NASA; thus, a component of the research
within the NASA Aeronautics Controls and Guid-

ance Program is directed toward the development of

design, assessment, and validation methodologies for
flight-crucial systems (ref. 4). An important aspect

of this work is developing the engineering tools that

support cost-effective certification of future flight
systems.

The state of the art of this technology was a pri-
mary issue of discussion at a workshop on digital

systems technology held at Langley Research Cen-

ter. The consensus of this representative sample of
the U.S. aerospace industry was that there is a "lack

of effective design and validation methods with sup-

port tools to enable engineering of highly integrated,
flight-critical digital systems (ref. 5)." Design meth-

ods are generally fragmented and do not support in-

tegrated performance, reliability, and safety analysis.

There is a growing recognition that such integrated

studies will require an integrated design and evalua-
tion environment. A primary purpose of such an en-

vironment is to achieve a level of integration of the di-

verse support tools used in the system developmcnt.

Ideally, the environment is "open," as distinguished

from "proprietary," in which case the integration of
foreign tools is difficult at best.

The integration function of a computer-aided

software engineering (CASE) environment can be

split into three areas: data, control, and presenta-

tion integration (ref. 6). In addition to these areas,

a fourth area, which deals with process integration,
is emerging as a critical functionality that can also

be provided by the environment (ref. 7). Data in-

tegration can be achieved by exchanging data be-

tween tools directly or by storing the data in a shared

project directory. A central repository for project in-
formation facilitates configuration management and

tends to define project information structures that

are independent of the specific tools used to manip-
ulate this information. Control integration allows
tools to coordinate their activities to maintain con-

sistency between the information managed by each
tool. A well-known example is the UNIX makefile

system, which ensures that an executable program is
generated from the latest versions of the source code

and the "include" files. The purpose of presenta-
tion integration is to provide a uniform user interface
to the services provided in the environment. Pro-

cess integration deals with supporting the dynamics

of software development by defining, managing, and
certifying the set of activities across the software life

cycle.

Generally, the two approaches used to achieve
tool integration are tool collections and an inte-

grated project support environment (IPSE). The tool

collection approach represents the state of practice.

Operating System

Data Repository

J Data Integration Services (Language Interface)

,, t

_nagement Se ces /

User Interface Jl

/

/J]
/'

1
I

/

Figure 1. IPSE reference model.

Here, the emphasis is on the tools themselves. This

approach acknowledges a variety of tools on the mar-
ket with a variety of mechanisms for working together
and identifies the lowest common denominator of ser-

vices for tools and support-specific end-user activi-

ties. The services provided and activities supported

are typically no more than what is provided by the

operating system.

An IPSE provides a common infrastructure into
whicti tools can be embedded, The reference model

for an IPSE is the "toaster" model shown in figure 1

(ref. 7). This model defines a set of services within
a framework. The message-server network allows
communication between different tools and services

in the environment. Typically, this service builds on

or extends the communications services provided by

the underlying operating system. The user interface

is typically provided by one of the emerging window

management standards such as Motif (ref. 8). Task

management, data repository, and data integration
services are provided by the IPSE. By fitting into the
"slots" of the toaster model, the tools are integrated

and can work together efficiently.

The largest roadblock to integration is a lack of

widely accepted standards. Vendors have invested
time and money into their own integration techniques

and move slowly to discard or revamp their invest-
ment for standards that are not yet widely accepted.

The result is a host of integration "standards," very

few of which are compatible with each other. An

overview of major standardization efforts can be
found in reference 9. Of the toot-oriented standards,

a recent standard from the Object Management

Group (OMG) has emerged with implementations

by Sun Microsystems, Inc. and Hewlett-Packard Co.

(rcf. 10). Of the IPSE standards, the Common Ada
Programming Support Environment (APSE) Inter-

face Set (CAIS) (ref. 11) and the Portable Common
Tool Environment (PCTE) (ref. 12) are two stan-
dards that address the whole IPSE reference model.

The PCTE is a European Computer Manufacturers

Association (ECMA) standard tool-building frame-
work that is gaining widespread support both in

Europe and the United States.

Objectives

A primary research thrust of the Systems Ar-

chitecture Branch at Langley Research Center is to

develop the computer-aided technology for safety-
critical software and high-performance architecture

systems for advanced aircraft avionics. This work
is motivated by the belief that computer automa-

tion techniques are eminently possible through fo-
cused research on application-specific domains and
that these automation methods will result in signif-

icant gains in productivity, quality, and safety. To

support this research, a project was initiated to eval-

uate an open environment software infrastructure as
the framework for this design technology. This pa-

per describes the use of the PCTE version 1.5 Public
Interface Standard as implemented by Emeraude, a

2

Frenchcompany.This projectemphasizedthe Ob-
ject ManagementServices(OMS),by far the most
significantfeatureof PCTE,andthetoolencapsula-
tion facilitiesof theEmcraudeenvironment.

Thelong-rangegoalof thisworkis to definethe
roleandrequirementsof anopenframeworkfor de-
velopinghighly integrated,flight-criticalcomputer
systems.Frameworksarc vaguelydefinedbut gen-
erallyreferto environmentsfor the communication
andintegrationof toolsin a process(ref. 13). Ac-
commodatingthe entiredesignprocessis a recent
emphasisof theseenvironments,asopposedto tim
previousemphasison the tools themselves,which
wereoftentoolswithproprietaryinterfaces.Tobet-
ter understandthe role that an openenvironment
canplay in a toot integrationcontext, a study was

conducted in which three existing software products

were encapsulated and used in a coordinated design

process. These tools had not previously been used

in a coordinated manner. Two of these products,
CSDL CASE (ref. 14), a computer-aided software en-

gineering design tool from the Charles Stark Draper

Laboratory, Inc., and InquisiX (ref. 15), a software
reuse tool from Software Productivity Solutions, Inc.,

arc alpha-release versions. The third tool, ADAS

(ref. 16), an architecture design and analysis tool,
is a commercial-off-the-shelf tool. The objectives of
the study were to

1. Demonstrate through a simple but realistic ex-

ample the value of an open environment in facilitat-
ing a coordinated design process; because members

of the project team did not have previous experience
with the Emeraude environment, a small demonstra-

tion project was the fastest way to confront open

environment issues in the tool integration context

2. Demonstrate the encapsulation and integration
of existing software tools through a shared, common

infrastructure; although productivity and rcliability

advantages exist for building new tools in an open

environment framework, many existing tools serve
useful fimctions and are not likely to be replaced in
the foreseeable future

3. Identify areas for further research in the open
environments that are needed to support the devel-

opment of automated design technology

Project Description

Demonstration Context

To meet the objectives outlined for this study,

part of the study reported in rcfcrcnce 17 was repro-
duced and automated. That study examined the per-

formance of various architectures for large-grain data

flow parallelism. The architectures studied involved

an array of processors interconnected to a scheduler

and a work load generator. A typical architecture

is shown in figure 2. The performance of an archi-

tecture was tested using a data flow graph depicting
the major software processing elements and the or-

der of cxecution as determined by the data flow be-

tween processing clements. Previously, the data flow

graph was converted by hand into a textual represen-
tation that was read by the SpawnProcess com-

ponent shown in figure 2. The hand generation of
different data flow work loads was one of the most

burdensome tasks in the original study. Although
CASE tools were available to generate these data flow

diagrams, the outputs of the tools were not compati-

ble with the inputs to the simulation tool used in the

performance analysis. An objective of the project,

then, was to investigate the direct use of the output

of an existing CASE tool used by software designers
as input to the simulation tool used by the architec-

ture designers. Essentially, the architecture studies

would have the benefit of using real software work
loads, although for this study, the actual work loads
defined in reference 17 were used.

Spa_nPr_ess I

I
_bedu_er I

I

Figure 2. Macro data flow scheduler (8 processors).

An overview of the demonstration project is

shown in figure 3. For this demonstration, the
Software Designer generates the software work

load data flow graphs using the CSDL CASE soft-

ware design tool. These diagrams are used to gen-
crate different textual representations of work loads

for input to the ADAS simulation tool. Because

many work loads could be generated for testing the

3

Software Reuse

Designer Encapsu_l_,d Libra dan Encapsu_lad
TOO/ TOO1

Data Flow Graph

Catalog

Object @_

Put

Object (obiect_

a rch_k, Get Object
LIbr_

e

Architecture ,._,_::#i,_d A"_. _)

Designer _ -,_._._i

[...........tpt is _EL_Y==035

Workload Scri _t

tl
Deslg_oGreph

IWorkload Scdptll

' L Filler)1

Figure 3. PCTE demonstration.

performance of proposed architectures, ideally the
work loads would be classified and stored in a reuse

library. The application of the InQuisiX-reuse library
tool would further demonstrate the capabilities of the

open environment for integrating engineering tools.
After the work load information was cataloged by

the Reuse Librarian, the InQuisiX tool could be

used by the Architecture Designer to browse the
data basc and select the work load with the desired

attributes to use with the ADAS tool.

Tool Set

The CASE tool used for generating the data

flow diagrams was developed by the Charles Stark

Draper Laboratory, Inc. (CSDL) under contract to

Langley Research Center. This tool is oriented to-

ward the aerospace controls engineer and can gener-
ate Ada code and documentation directly from en-

gineering block diagrams of the control algorithms.

Figure 4 shows a block diagram for a yaw-damper
algorithm consisting of first-order lags (FOLAG),

washout filters (WOUT), switctms (SWITCH), and

limiters (lim), which can all be retrieved from a li-

brary. As originally developed, the CSDL CASE out-

put consists of the automatically generated Ada code
and supporting documentation. The engineering di-

agrams arc stored in intcrnal libraries and are not
available for other engineering tools. One of the first

tasks was to specify a generic data flow representa-

tion and to task CSDL to produce this format from

the internal representation within the CSDL CASE

tool. When this task was accomplished, the data flow

diagrams could be used with other engineering tools.

The availability of InQuisiX, developed by Soft-

ware Productivity Solutions, Inc. under Small Busi-
ness Innovative Research (SBIR) contracts, offered

another dimension for study within the scope of this

project. InQuisiX can define a taxonomy for a sct

of objects and store and retrieve objects according
to this classification scheme. Many of the features
of the classification scheme of InQuisiX are available

as part of the object nmnagement facilities of PCTE.
Howcvcr, InQuisiX does provide a user interface to

search thc object base for those objects that match

user-specified criteria. A comparable searching facil-

ity wa_s not available in the Emeraude implementa-
tion of PCTE, so InQuisiX was selected for the study

to provide this capability. In discussions of the role

of InQuisiX for this project, it was generally felt that

the development of InQuisiX would have been greatly
simplified if access to the common services provided

by PCTE were availablc.

ADAS is a discrete-event simulation tool mar-

keted by CADRE Technologies, Inc. This tool allows

the user to graphically define a system model, run
a discrete-event simulation of the system, and view

the simulation as it progresses. Additionally, ADAS

also provides tables of the results that can be fur-

ther analyzed. This tool has proven to be effective

4

Name YAWDAMP]Tille Yaw Control TTYPe NON ITERATIVE TRANSFORM

Data Flow D_agram

GAS Forward Loop Gain

_ESE

>L_

_H

O delr yd
u_TW

lau

I WOUT O
t

CSDL CASE
Computer-Aided Software Engineering

Automated Programming

Subsystem

Sponsored By

The NASA Langtey Research Center
Developed By

The Charles Stark Draper Laboratory, Inc.

Major Menu Options

Load Projecl File Choose Transform

Save Ptojecl Transform Clear Transform

Describe Transform ChaNge Size

Edil Superior L_st Inferiors

Generale Document Generate Code

Execute Check Consistency

Show Free Nodes Delete Translorm

H_erarchy Edil Signal Types

Suggestion Box

Select a transform

yaw control
YAWDAMP

IIm

FCAS

FOLAG

WOUT

INTEGER'2

INTEGER'4

REAL'8

POSITIVE

NATURAL

FLOAT

INTEGER

MERGE

REF

SET

ASIZE

ATAN

TAN

COSINE

SINE

INCREMENT

DECREMENT

URANDOMF

URANDOMI

GRANDOM

MINUS

LIMIT

FEEDBACK

DELAY

SWITCH

AGEB

ALES

A GREATER THAN S

A-EQUAL-B

A LESS THAN S

LOGICAL NOT

LOGICAL AND

LOGICAL XOR

LOGICAL OR

NATURAL

EXPONENTIAL

SQUARE ROOT

ABSOLUTE VALUE

DIVIDER

MULTIPLY

SUBTRACT

AI)nFR

Figure 4. CSDL CASE engineering block diagram.

for measuring the performance of proposed parallel

architectures for aerospace applications (ref. 17).

Project Implementation Using PCTE

PCTE Services

Figure 5 illustrates the following major services
offered by, the Emeraude implementation of PCTE
version 1.5:

1. The most significant aspect of PCTE is the

Object Base, which is the common repository of all
data in PCTE. The Object Base is a typed, persistent
store.

2. The Metabase is that portion of the Ob-

ject Base devoted to describing the contents of the

remainder of the Object Base. In practice, the
Metabase is a collection of objects that describes the

data types of the objects in the Object Base.

3. The primary operations for accessing the Ob-

ject Base are provided by the PCTE Object Manage-
ment System (OMS). The OMS provides tools that

can create, examine, and alter objects in the Object
Base.

4. The Execution/Communication services in-

clude support for distribution of the Object Base and
for interprocess communication.

5. The Metabase Services are operations that
use the OMS to examine and update the Metabase.

Examples include operations to create new types and
to determine the type of an object.

6. Version Management Services are available for
all objects in the base.

7. Data Query Management Services allow pro-
grams to formulate searches of the Object Base.

Not all the services listed above were used in

this project. The Execution/Communication ser-
vices were largely irrelevant because the evahmtion
copy of the Emeraude environment obtained for this

project was limited to a single network node. The

Data Query Management facilities currently lack an

interactive interface in the Emeraudc environment,
thus appear to be relatively inaccessibIe. Version

Management, although critical to long-term projects,

would not have been fully exercised during this rel-

atively short project. On the other hand, the most

novel and pervasive new capability offered by typical
open environments is an Object Base. The PCTE

Object Base and OMS were used extensively. For this

application, Metabase services were employed toex-

tend the Metabasc, which added new data type de-

scriptions in accordance with data manipulation by
the project tool set.

I Metabase t ObjectBase

!"Com

sMee21ib;: e 1 / MV2::2rn nent

l ,(Tool

Data Query

_agemenI

Tool 2

Figure 5. PCTE services.

Tool Classes

From the viewpoint of PCTE, two important

classes of tools are presented, as illustrated in

figure 6.

Native: Native tools are those designed and imple-

mented with specific PCTE support. Such tools will

ideally distribute inputs and outputs across many
OMS objects, attributes, and relations in an effort
to anticipate the information requirements of other

tools that may later be added to the environment. To

native tools, the OMS represents an elaborate stor-

age system supporting interobject relations.

Foreign: Foreign tools are those designed for use
in another environment such as UNIX. Such tools

expect inputs and outputs to appear in simple files.

Foreign tools (such as UNIX tools) can be im-

ported into the Emeraude environment by a process

of encapsulation. The encapsulated tool still receives

inputs and outputs from "files," but many of these
files are now objects of type file (or some subtype

of file) in the Object Base. The OMS allows the
environment to record information about these files

as attributes and relations without examining the in-
ternal file structure. The file objects themselves are

treated as black boxes by the Emeraude environment.

Emeraude provides two mechanisms for encapsu-
lation. The first is to recompfle the tool, substitut-

ing the Emeraude I/O library for the "conventional"

X Windows
d
I

/

UNIX I/O library. This substitution provides a set

of I/O operations with signatures that are identical
to the file-handling primitives of UNIX, but that ac-

tually open, close, read, or write objects of type file
in the PCTE Object Base. The second mechanism,

which is useful for tools that receive their file names
via their command line invocation, is to wrap a sim-

ple Emeraude shell script around the tool invocation.
Within that script, the command line parameters are

processed by a special Emeraude command to con-
vert the logical paths to file objects into the actual

UNIX path names where the Object Base has lo-

cated the particular file objects. Path names can
then be read and/or written using the normal UNIX

primitives.

The tool set used for this study consisted of

foreign tools. Because the source code was not
available for these tools, the second encapsulation

method was employed in this project. However,
the CSDL CASE tool, as previously mentioned, was

modified by the CSDL to use internal information.
This information represented the data flow object.

Although the encapsulation method was used with

this tool, it had some of the characteristics of a native

tool.

The O/_]IS Type system

As noted earlier, all objects in the PCTE Object

Base are typed. The type determines

1. Attributes that describe the object

6

UNIX File System

UNIX Tool

PCTE Object Base

", Encapsulated ,'
I

t t

1 p/

UNIX Tool

\\

J

Native Tool

Figalre 6. Integrating tools.

2. Relations (links) the object may have with
other objects

3. Whether the object has contents (i.e., can we

open and/or close it and apply read and/or write
operations to it?)

An attribute is a named value associated with an

object. Attributes can be strings or numbers. A

relation is a bidirectional link between two objects.
Each direction has a different name. Both attributes

and relations can be viewed as "properties" of the

object. When that property is itself another object,

it is a relation. When the property is a simple string
and/or integer value lacking a separately addressable
identity, it is an attribute.

Types are related by inheritance, which means
that if Sub is a subtype of Super, then all attributes
and/or relations of Super are also available for ob-

jects of type Sub.

The Emeraude environment comes with a numbcr

of predefined types. These types define OMS analogs
of the following familiar concepts:

dir a "container" of files and other

directories; more precisely, an object
that serves as the head of a number

of links to directories and files

file an object that has "contents" and

can be written to and/or read
from; has attributes: owner and

modification date, among others

object_code a subtype of file, intended to hold
only object code

c_source a subtype of file; to the usual file
attributes and relations adds

links to "include" files and other C

language-specific information

object the "root" of all types

Figure 7 shows the inheritance relations that re-

late the predefined types. The inheritance hierarchy

is important to determine the properties offered by
objects of any given type. For example, any object
has a name attribute; therefore, a file has a name

as well. A file has contents; therefore, so does any
c_source object. On the other hand, c_source ob-

jects have attributes and relations that are specific to

c_source code and would not be applicable to gen-
eral files.

7

object

f -....
dir file

c_source object _code

Figure 7. Predefined types: inheritance hierarchy.

Because each object is typed, the environment

and the tools running in that environment are aware
of what attributes and relations are available for any

given object. The environment can prevent the use of

inappropriate attributes and relations with an object.
Less obviously, tile type system allows control of the

visibility of objects, attributes, and relations. Each
user has a working schema. The working schema

is a list of object, attribute, and relationship types
available to the user. Attempts to access an object,

attribute, or relation whose type is not in the working
schema will fail, just _ if that object, attribute, or
relation did not exist. Individual users and groups

can be given or denied access to sets of types, thus

given or denied access to objects of those types.

Type Schemas

Types are grouped into Schema Definition Sets

(SDS). A type may appear ill tile SDS's. As new
tools are brought into the environment, new kinds

of input/output data employed by those tools must
be described to the environment. An environmental

description is accomplished by defining a new schema
containing the data types needed by the new tool.

As an example of this design process, consider

the problem faced in this project of integrating the
CSDL CASE and ADAS tools. This scenario called

h_r software designs (data flow diagrams) from CSDL
CASE to be combined with machine-characteristic

information to produce a work load script to drive

an ADAS simulation.

This problem suggests an initial list of new types:

a data flow diagram, machine characteristics, and a

work load script.

On closer examination, it was determined that

CSDL CASE can represent data flow diagrams as

directed graphs or as a text script, suggesting two

more types: did_graph and did_script.

The first step in defining these types was to

organize them into an inheritance hierarchy, as shown

in figure 8.

Objects of type did_script and did_graph are

produced as files by CSDL CASE; they have con-
tents (i.e., wc must bc able to read and write

them), so it makes sense that they should be treated

as subtypes of file. Similar arguments hold for
machine_char and workload_script.

The notion of a data flow diagram (did) as a pos-

sible combination of graph and script is an organiza-

tional idea (for example, analogous to a directory).

As such, this flow diagram has no contents of its own
so it cannot be a file.

After the inheritance hierarchy has been set, re-

lations are added among the types. Relations serve

both to add information about the objects and espe-

cially to enforce certain constraints:

1. For every work load script, there can be

only one data flow diagram and one machine-
characteristics file.

2. The same data flow diagram can be used to

produce many different work loads (e.g., by varying
the machine characteristics and/or number of con-

current tasks).

3. The same machine characteristics can be used

to produce many different work loads (e.g., by vary-

ing the software data flow and/or number of concur-

rent tasks).

object

workload_cript machine_char dill_graph dfd_serlpt

Figure 8. Project inheritance hierarchy.

8

4. For any data flowdiagram,therecanbe at
mostoneCSDLCASEgraphandat mostoneCSDL
CASEscript.

The first threeconstraintscanbe seenin the
schemashownin figure9. In this figure,theboxes
denotetypes,andthetrianglesanddiamondsdenote
relationsthat maylink objectsof tile indicatedtype.
A diamondis usedwhena nameisassignedto each
directionof therelation,anda triangleisusedwhen
a nameis givento only oneof the two directions.
Thus,for example,fromanyworkloadobject,one
canfollowa .script link to find thecorresponding
workloadscript,andfromaworkloadscriptobject
onecanfollowa .script_for link backto its work
load.

[workloadJib]

I
V

namew

_1 workload I<<

,flow.for l 'script-fOr 1 used_in

.flow /script .machine

l

Figure 9. Work load schema definition set.

Links that end in a single arrowhead denote a

many-to-one link. Links ending in a double arrow-

head denote a many-to-many link. Thus it is appar-
ent from figure 9 that a given work load has a single

data flow diagram (via the . flow link); however, each
data flow diagram can contribute to many work loads

(by way of the .flow_for link). When both direc-

tions of a relation are many to one, the combination

is equivalent to a one-to-one relationship. Thus, the
relation between work loads and work load scripts is
one to one.

The fourth restriction is captured in the schema

shown in figure 10, which also illustrates an early
decision that the environment might contain many

different tools capable of building and manipulating
data flow diagrams such as both the CSDL CASE
and ADAS tools.

The final step in developing schemas for describ-

ing tool interactions is to "decorate" the object types

with attributes to help describe the objects and to
make internal information available to other tools.

Some of the attributes we employed for workload

and dfd objects were

name an identifier inherited from the root type
object

topology--a name describing the general shape
of a data flow graph

num_tasks--the number of duplicate tasks, each
a complete instance of the software data flow diagram

width, max_path_length,...- various attrib-
utes describing the shape and properties of the dfd
graph

Note that information such as the dfd and ma-

chine characteristics used with each work load is al-

ready available, but as relations, not attributes.

By following relationship links and examining the
attributes of the objects encountered, a variety of
searches and retrievals can be performed. Emeraude

has query and searching primitives (the Data Query
Management Services), but these primitives are pro-
vided as a library of C routines. No interactive tool

except a basic OMS browser is currently provided.
InQuisiX, which was used for this purpose, is a reuse

librarian tool that describes library units in terms of
attributes and permits interactive searches for units

that satisfy various constraints on those attributes.

Many attributes defined for work loads were chosen

to illustrate the processes of registering a work load

in a reuse library and of permitting later searches
and retrievals of those work loads. In such a situ-

ation, we would anticipate that some, but not all,
of the useful information about the work load would

be assigned by the tools that created the work load.

This assignment by the tools is true of (1) the name,

(2) the links to data flow diagram, work load script,
and machine-characteristics files, and (3) the num-

ber of concurrent tasks. Other attributes, primarily
those concerned with documentation, would be filled

in by the reuse librarian when the object is cataloged
for general use.

Thus, in this case, it was necessary for PCTE

attribute values to be sent to the InQuisiX library,

and for any changes to object attributes made by
the InQuisiX librarian to be reflected later as PCTE
attributes.

Summary of Experience With Emeraude

PCTE Version 1.5

The project was undertaken over a 10-week pe-
riod from June 1, 1992 to August 7, 1992. This

period was chosen to correspond with the summer

on-site performance period of the JOint VEntures

(JOVE) program funded by Marshall Space Flight

.graph-of I

I dgraph

Ldr aper _d fd_graph i

graph_for

• draper 1

kdraper-dfd}

Figure 10. Set for

Center, which sponsored one project member. The

project, which was successfully completed within the
allotted time, consisted of four major tasks:

1. Education (2 weeks): This task included in-

stalling and stu.dying the capabilities of the Emer-
aude environment. Additionally, the target tool set

was unfamiliar to the project team; therefore, part of

this time was devoted to studying the capabilities of

the two alpha-release tools and the commercial tool.

2. Demonstration definition (3 weeks): During

g7

me.subname.dfd

ad as -for I
/

: adas_

.script_of

dscript

[draper_dfd-script I

dfd schema definition.

which foreign tools could be encapsulated in the
Emeraude implementation of PCTE. The facility of

this effort was partly duc to the orientation of the
environment toward UNIX and the project team's

knowledge of UNIX.

The current PCTE standard only supports large-

grain data modeling at the object level. The internal
structure of objects is treated as a black box by

PCTE; thus, tools designed for manipulation of the
contents of the objects must agree on format outside

this time the functions to be demonstrated (software

reuse, CASE, and architecture performance evalu-

ation) were refined, and the dcmonstration process
was defined. These refinements involved evaluat-

ing the data integration possibilities of the target
tool set. The need for a CASE tool modification

was recognized, and the specific modification was de-
fined. This modification was implemented in a very

short time by the developers of thc CASE tool at the

Charles Stark Draper Laboratory, Inc.

3. Implementation (3 weeks): The PCTE object

types, relations, and schemas were developed with
the tool encapsulation scripts and filters.

4. Evaluation (2 weeks): During the last 2 weeks,

the coordinated design process, as represented in

figure 3, was demonstrated. The project was also
documented during this time.

The fact that this project was completed within

the 10-week period indicates the relative ease with

tile modeling capabilities of PCTE. Nevertheless,
the ability to model objects at tile large-grain level
and to define the relationships between them was

valuable. The development of an explicit object

data model clarified the role of each tool in the

project's engineering development process and tile
relationships between the tools. This model also
enforced consistency and precision in the use of the
information defined and manipulated by the tools.

Although PCTE does not support the encapsulation
of object types with behavior, it was not limiting for

this particular project.

Additionally, the availability of an external ASCII
format for the internal contents of the data flow

diagrams and the work load scripts allowed some fine-

grain data manipulation through the development

of simple filter programs that translated between
formats. Most of this project was developed using
the facilities of the Emeraude Shell Programming

10

LanguageandMakefilefacility.Programsin Cwere
writtenonlyfor thefine-graindatafiltering.

Becausethethreetoolsusedin thisprojectwere
developedby threedifferentvendorswith different
windowsystemsand approachesto user-interface
management,eachtoolpresenteda distinctinterface
to its services.Theavailabilityof anopenenviron-
mentwith infrastructuresupportfor defininga user
interfacewouldcontributegreatlytowardproviding
aconsistent"lookandfeel"foreachtool.

OnemajoradvantageofthePCTEObjectMan-
agementSystemis supportfor transactioncontrol.
Theusercould define the beginning of an activity,
manipulate a set of objects, then abort the activ-

ity and roll the system back to the original state.
This facility eased the tasks of learning PCTE and

correcting the software developed for the project be-

cause the Object Base could always be returned to a
consistent state. In fact, part of the demonstration

was performed as a transaction activity, then rolled

back to return the system to the same starting state
for subsequent demonstrations.

Research Issues

The study also considered several areas of future

research, which include object management support
with programming language interfaces, development

environments for concurrent systems, and process
modeling.

Object Base Technology

The object-oriented data base (OODB) is a rel-

atively new class of data storage that has not yet
matured to the same degree as more conventional
data base forms. Open issues affecting both the fea-

tures and performance of OODB's include: type evo-

lution, scale and granularity, inheritance of behavior,
and efficiency. Many of these issues are discussed in

references 18 and 19. The development of appropri-
ate type systems for persistent object management

in particular is complicated by the need to map per-
sistent object types into types that can be processed

by a variety of conventional programming languages;

that is, the purpose is to achieve an interoperable type

system. Most prior efforts to achieve interoperability
have been directed at overcoming differences in ma-

chine and/or language representation of "equivalent"
data structures. Approaches have included

1. Imposing a single data model: An example is
the widespread adoption of the IEEE standard for

floating-point number representation. By encourag-
ing all vendors to comply with this model, inter-

operability of this data form is achieved. Unfor-

tunately, by its nature this approach can only be
achieved for a finite number of data structures.

2. Imposing a unifying data model: Data descrip-

tion languages such as the Interface Description Lan-
guage (IDL) provide a uniform model for construc-

tion of new compound data structures from a small

set of primitives (ref. 20).

The combination of single data models for prim-

itives (for example, numbers and characters) and a
unified model for construction of compound struc-

tures is an important step toward achieving inter-
operability. There is another level, however, at which
it is often more convenient to consider the issue: the

level of the data abstraction implemented by a par-
ticular representationl Representation-level schemes

provide only minimal assurance that a given data

structure will be manipulated in an acceptable man-
ner by users from distinct environments. In other

words, the data are transferred, but the enforcement

of the abstraction captured by that data is left to

the good will and capabilities of the programmers in
each environment.

Programming Language Interfaces to
Persistent Data

Conventional data base languages have long been

criticized for a lack of programming power and ex-
pressiveness as well as being far behind the state

of the art in incorporating software engineering con-
cepts into language design. On the other hand, tra-

ditional programming languages offer no support for
persistence beyond the idea of a "file." For this rea-

son, interest has been growing in "persistent pro-

gramming" languages that merge the expressiveness
of modern programming languages with support for

persistent object stores (ref. 21).

Most persistent programming languages organize
persistent data into special "bulk" data types such

as sets or relations (refs. 22 and 23). A smaller

number of these languages have attempted to merge
persistence support directly into a traditional lan-

guage with little or no visible change 'to the lan-

guage (ref. 24). Curiously, this minimally intrusive

approach has seldom been employed with languages
that offer rich support for data abstraction. An ex-

ception is Zeil's hLEPH project which adds persis-

tence to Ada (ref. 25 and work done for Langley
under NASA grant NAG1-439 and National Science
Foundation grant CCR-8902918 at Old Dominion

University Department Of Computer Science). The
hLEPH language preprocessor currently under devel-

opment can serve as a vehicle for experimentation

11

and distributionof theseprotocolsby providinga
simpleinterfaceto persistenceandgarbagecollection
for Adaprogrammers.

Environments for Concurrent Systems

Concurrent software design differs from sequen-

tial software design in several significant respects. A

major difference between techniques involves the co-
ordination between processes, hi a concurrent sys-

tem, processes must communicate, and the seman-
tics of such intcrprocess communication can easily

bc utilized incorrectly by the implementation. The

results are concurrency anomalies such as deadlock

or corruption of shared data. The construction of

concurrent system design tools requires a model of

concurrent systems that]ends itself to concurrent

system design and exploitation of that model in a

specification language that captures the model prop-
erties. Early work on models of concurrent systems

emphasized avoidance of system execution anomalies

(for example, deadlock) and guaranteed the correct-
ness of shared-data access. Recent work focuses more

on efficient forms of concurrency that can be derived

by redefining correctness properties and allowing for
varied and more complex interleaving of shared data

operations. Early work focused on enforcing correct-
ness critcria at the process level rather than the in-

dividual operation level; recent work emphasizes in-

dividual operations.

One model, the general process model (GPM),

provides a framework for the consideration of both

system syntax (that is, the arbitrary forms of data
objects and accesses) and semantics (that is, the

meaning and effect of individual data objects and
manipulations). This model is the basis for the devel-

opment of environments for designing and analyzing
concurrent systems. (For example, see ref. 26.)

Process Modeling and Management

The validation and verification of mission-critical

computer systems must encompass not only the arti-

facts produced (for example, specifications, code, and

designs) but also the process used to develop those
artifacts. Process modeling rcfers to the definition of

the set of activities that comprises the development

process and the interrelationship of thcse activities.
Process managemcnt refers to the use of a process

model in controlling, measuring, and certifying the

dynamics of development. The importance of process

modeling for the development of complex computer

systems has been recognized for some time (ref. 27),

but interest in this area has increased rapidly over

the past few years (rcfs. 7 and 28).

An open environment can play a significant role

in the management, enforcement, and documentation
of the development process. Because a process model
controls the set of activities that makes up the engi-

neering development, this process is best embedded

in a unified development environment in which all
access to development resources can be monitored,

recorded, and controlled.

Conclusions

The development and operation of complex com-

puter systems will require computer-aided support

throughout the system life cycle. The proliferation of

computer-aided software engineering systems in the
past decade is a testimony to the widespread need for

automation technologies to support computer system

development. Although the specific set of technolo-

gies, tools, and methodologies varies with applica-
tion and state of practice, it is possible to identify an

underlying infrastructure that provides the basic set
of services necessary to support a unified system de-

velopment environment. An environment such as the
Portable Common Tool Environment (PCTE) pro-

vides this underlying set of services.

This study investigated the rote that an open en-
vironment could play in the development of mission-

critical computer systems. A conceptual design

scenario for the performance evaluation of parallel

computer architectures that involved three diverse
software tools was proposed. The tools were inte-

grated using the emerging PCTE standard, and the

design scenario was successfully demonstrated.

The study demonstrated the feasibility of inte-

grating a set of independently developed tools into
a design environment and suggests that the current
state of open environment standards, as represented

by PCTE version 1.5, is sufficiently mature to war-
rant consideration in future implementations. This

study also suggcsted future tool development Should
be undertaken within an open environment context

and that existing tools should be migrated into that
environment. This strategy would provide many op-

portunities for the integration of existing and pro-

posed capabilities into a unified and manageable dc-

velopmcnt process.

NASA Langley Research Center
Hampton, VA 23681-0001
June 30, 1993

12

References 14.

1. Grantham, William D.; Person, Lec H., Jr.; Brown,

Philip W.; Becker, Lawrence E.; Hunt, George E.;

Rising, J. J.; Davis, W. J.; Willcy, C. S.; Weaver, W. A.;

and Cokeley, R.: Handling Qualities of a Wide-Body

Transport Aircraft Utilizing Pitch Active Control Systems

(PACS) for Relaxed Static Stability Application. NASA

TP-2482, 1985. 15.

2. Cronin, M. J.; Hays, A. P.; Green, F. B.;

Radovcich, N. A.; Helsley, C. W.; and Rutchik, W. L.: In-

tegrated Digital/Electric Aircraft Concepts Study. NASA 16.

CR-3841, 1985.

3. Waterman, Hugh E.: FAA's Certification Position on

Adwmced Avionics. Astronaut. _4 Aeronaut., vol. 16,
no. 5, May 1978, pp. ,i9 51. 17.

4. Holcomb, Lee; Hood, Ray; Montcmerlo, Melvin; Jenkins,

James; Smith, Paul; DiBattista, Jotm; De Paula, Ramon;

Hunter, Paul; and Lavery, David: NASA Information 18.

Sciences and Human Factors Program Annual Report,
i990. NASA TM-4291, 1991.

5. Meissner, C. W., Jr.; Dunham, J. R.; and Crim, G., eds.:

NASA-LaRC Flight-Critical Digital Systems Technology

Workshop. NASA CP-10028, 1989.

6. "Wasscrman, Anthony I.: Tool Integration in Software En- 19.

gineering Environment. Software Engineering Environ-

ments, F. Long, ed., Volume 467 of Lecture Notes in Com-

puter Science, Springer-Verlag, 1989, pp. 137 149.

7. Reference Model for Frameworks of Software Engineer-

ing Environments. NIST SP-500-201 (ECMA TR/55,

2nd ed.), National Inst. of Standards and Technology, 20.
Dec. 1991. (Available from NTIS as PB92 158 328.)

8. Open Software Foundation: OSF/Motif Programmer's

Guide. Prentice-Hall, c.1990.

9. Zarrella, Paul F.: CASE Tool Integration and Stan- 21.

dardization. CMU/SEI-90-TR-14 (Contract F19628-90-

C-0003), Carnegie-Mellon Univ., Dec. 1990. (Available

from DTIC as AD 235 640.)

I0. The Common Object Request Broker: Architecture and
22.

Specification. OMG Doc. No. 91.8.1, Digital Equipment

Corp., Hewlett-Packard Co., HyperDesk Corp., NCR

Corp., Object Design, Inc., SunSoft, Inc., c.1991.

11. Military Standard Common ADA Programming Support 23.
Environment (APSE) Interface Set (CAIS), (Revision A),

Volumes I IV. MIL-STD-1838A, Apr. 6, 1989. (Super-

ceding DOD-STD-1838, Oct. 9, 1986.)

12. Boudier, Gerard; Gallo, Ferdinando; Minot, Regis; and 24.
Thomas, Ian: An Overview of PCTE and PCTE+. Pro-

ceedings of the A CM SIGSOFT/SIGPLAN Software En-

gineering Symposium on Practical Software Development

Environments, Peter Henderson, ed., ACM Press, 1988,
pp. 248 257. 25.

13. Schulz, Steven E.: Frameworks: Debunking the Myths.

Electron. Design, vol. 39, no. 6, Aug. 22, 1991, pp. 71 80.

"Walker, Carrie K.; and Thrkovich, John J.: Computer-

Aided Software Engineering An Approach to Real-

Time Software Development. A Collection of Technical

Papers Part 1, AIAA 7th Computers in Aerospace Con-

ference, Oct. 1989, pp. 10 19. (Available as AIAA-89-

2961.)

InQuisiX TM Software Reuse Library System. Software

Productivity Solutions, Inc., c.1991.

ADAS An Architecture Design and Asscssment System

for Electronic Systems Synthesis and Analysis User's

Manual, Version 2.5. Cadre Technologies Inc., c.1988.

Young, Steven D.; and Wills, Robert W.: Perfor-

mance Analysis of a Large-Grain Data Flow Scheduling
Paradigm. NASA TP-3323, 1993.

Bernstein, Philip A.: Database System Support for Soft-

ware Engineering An Extended Abstract. Proceedings

9th International Confercncc on Software Engineering,

IEEE Catalog No. 87CH2432-3, IEEE Computer Soc.

Press, 1987, pp. 166 178.

Penedo, Maria H.; Ploedereder, Erhard; and Thomas,

Ian: Object Management Issues for Software Engineer-

ing Environments W_rkshop Report. Proceedings of the

A CM SIGSOFT/SIGPLA N Software Engineering Sympo-

sium on Practical Software Development Environments,

Peter Henderson, ed., ACM Press, 1988, pp. 226 234.

Lamb, David Alex: IDL: Sharing Intermediate Represen-

tations. ACM Trans. Program. Lang. CJ Syst., vol. 9,

no. 3, July 1987, pp. 297 318.

Atkinson, Malcolm P.; and Buneman, O. Peter: Types

and Persistence in Database Programming Languages.

ACM Comput. Surv., vol. 19, no. 2, June 1987,

pp. 105 190.

Sutton, Stanley M., Jr.: Appla/A: A Prototype Language

for Software-Process Programming. Ph.D. Diss., Univ. of

Colorado, July 1990.

Schmidt, Joachim W.: Some High Level Language Con-

structs for Data of Type Relation. ACM Trans. Database

Syst., vol. 2, no. 3, Sept. 1977, pp. 247 261.

Cockshott, W. Paul: PS-ALGOL Implementations: Ap-

plications in Persistent Object Oriented Programming.

Ellis Horwood Ltd., 1990.

Zeil, Steven J.: Adding Persistence and Garbage Collec-

tion Within ADA. Proceedings of the Ninth Annual Na-

tional Conference on ADA Technology, ANCOST, Inc.,
1991, pp. 80 86.

13

26.Jipping,MichaelJ.; andFord,Ray:PredictingPerfor-
manceof ConcurrencyControlDesigns.Proceedings of

the 1987 ACM SIGMETRICS Conf,:fence on Mcft_ure-

ment and Modeling of Computer Systems, ACM Press,

1987, pp. 132 142.

27. Ostcrweil, Lcon: Software Proccsscs Arc Softwarc Too.

Proceedings 9th [ntemlational CoTzf_rence on Software

Engineering, IEEE Catalog No. 87CH2,132-3, IEEE Com-

puter Soc. Press, 1987, pp. 2 13.

28. Wild, Chris; and Maly, Kurt: Software Life Cycle

Support Decision Based Software Developmcnt. Al9o-

rithms, Software, Architecture htformation Processing

92, Volumc I, ,]. Van Leeuwen, ed., Elsevicr Scirncc Publ.,

1992, pp. 72 78.

14

i

i

i

i FormApprovedREPORT DOCUMENTATION PAGE OMBNo.0704-0188

o ectmn of nformation is est mated to average 1 hour per response, inc ud ng the time for reviewing instructions, searching existing data sources,
Public report ng burden fO r th's c " •-- c--_ _^_rnont _ re_ardin _ this burden estimate or any other aspect of this

ta needed and corn et n and reviewing the co ec_ton oT mrormau_.. _,,u _v,,, _ _ 6
gathering and ma,nta!nmg, th, e ,dR . • P _-_-g burden to Washln_ton Headquarters Services Directorate for nformation Operations and Report ss, 1215 Jefferson

ion lncluQin su esllons ror reouur_$ Lii1_
:ollection o1" reformat , g gg , • ,, o . _ o _--t Paperwork Reduction Project (0704-0188) Washington uC 20503

Davis Highway Suite 1204, Arlington, VA 22202 4302, and to tne Mince or r_lanagemen_ anu ouu_ , v • _ ' '

I. AGENCY USE ONLY(Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
September 1993 Technical Memorandum

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

Open Environments To Support Systems Engineering Tool

Integration: A Study Using the Portable Common Tool

Environment IPCTE}

6. AUTHOR(S)
Dave E. Eckhardt, Jr., Michael J. Jipping, Chris J. Wild, Steven J. Zeil,

and Cathy C. Roberts

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

NASA Langley Research Center

Hampton, VA 23681-0001

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
National Aeronautics and Space Administration

Washington, DC 20546-0001

WU 505-64-50-05

8. PERFORMING ORGANIZATION
REPORT NUMBER

L-17202

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

NASA TM-4489

11. SUPPLEMENTARY NOTES

Eckhardt: Langley Research Center, Hampton, VA; Jipping: Hope College, Holland, MI; W'ild and Zeil: Old

Dominion University, Norfolk, VA.; Roberts: ICASE, Langley Research Center, Hampton, VA.

12a. DISTRIBUTION/AVAILABILITY STATEMENT
12b. DISTRIBUTION CODE

Unclassified Unlimited

13.

Subject Category 61

ABSTRACT (Maximum 200 words)
A study of computer engineering tool integration using the Portable Common Tool Environment (PCTE)
Public Interface Standard is presented. Over a 10-week time frame, three existing software products were

encapsulated to work in the Emeraude environment, an implementation of the PCTE version 1.5 standard.
The software products used were a computer-aided software engineering (CASE) design tool, a software reuse

tool, and a computer architecture design and analysis tool. The tool set was then demonstrated to work in a
coordinated design process in the Emeraude environment. This paper describes the project and the features of

PCTE used, summarizes experience with the use of Emeraude environment over the project time frame, and

addresses several related areas for future research.

14. SUBJECT TERMS
Open environments; Software environments; Portable Common Tool Environment

(PCTE)

17. SECURITY CLASSIFICATION
OF REPORT
Unclassified

18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION
OF THIS PAGE OF ABSTRACT
Unclassified

15. NUMBER OF PAGES
15

16. PRICE CODE

A03
20. LIMITATION

OF ABSTRACT

PrescribedbyANSI Z39-18
298-102

